Using Aura MLS observations to model budget terms, strattrop fluxes, and surface variability of N₂O Daniel Ruiz & Michael Prather, Earth System Science Dept, UC Irvine ### N₂O loss from Aura MLS measurements | Identifier | Version | Spectral
Region | Availability | Comments | |------------|---------|--------------------|-----------------|--| | N2O-640-V3 | V3.3 | 640 GHz | 08/2004-12/2010 | Prather et al. 2015 | | N2O-640-V4 | V4.2x | 640 GHz | 08/2004-12/2013 | MLS instrument issue; channel data not recommended after 07/2013 | | N2O-190-V4 | V4.2x | 190 GHz | 08/2004-12/2018 | Retrieval bias for profiles >68 hPa, not used | ## $N_2O - MIP$ (UCI CTM, NASA GMI, NILU LMDZ5) **Decay** per N-tracers are simulated in the absence of surface emissions to preserve the stratospheric signal #### Measurements vs Models MLS N₂O* uses NOAA HATS N₂O burden for 2005-2018 (ppb) MLS N_2O^* uses NOAA HATS N_2O burden for 2005-2018 (ppb) UCI F11x* decay corresponds to the right axis. All others correspond to the left. #### Complementary N2O (Neg-N2O) flux vs N2O(x) loss Stratospheric N₂O loss leads to peak neg-N₂O flux ~1 year later | X-correlation w/ cN2Ox STE | Offset | |------------------------------------|----------| | MLS N2O loss | -1.0 yrs | | UCI N2Ox loss (MLS overlap period) | -0.9 yrs | | UCI N2Ox loss (entire period) | -1.0 yrs | cN₂Ox: every N₂Ox molecule lost produces one cN2Ox molecule #### Monthly Tropospheric N2Ox vs total cN2Ox STE flux | X-correlation w/ cN2Ox STE | Offset | |-------------------------------------|----------| | UCI N2Ox Northern Hemisphere | +0.2 yrs | | UCI N2Ox Southern Hemisphere | +0.7 yrs | ### Surface N₂Ox: Seasonal cycle of stratospheric loss - North Larger seasonal amplitude - South < North #### Monthly surface climatologies UCI N₂Ox (no emissions) agrees with NOAA NH seasonal cycle UCI CTM STE: How do the STE fluxes compare in each negative-N₂O STE SH > NH (mechanism not understood) #### N₂O vs O₃ Tracer Correlations: Lower N₂Ox (no emissions) in SH for same O₃ 2.5 **UCI CTM** SH = -0.018x + 4.82.0 O_3 (ppm) 0.5 0.0 160 180 200 220 240 260 N₂Ox (ppb) Hemispheric difference due to increased transport of depleted-N₂O air into SH? *Data > 70° were not used due to retrieval limitations of ACE orbit # Acknowledgements - Jet Propulsion Laboratory Lucien Froidevaux - GSFC Susan Strahan, Steve Steenrod - NILU Rona Thompson - NOAA James Elkins, Geoff Dutton - NASA Ken Jucks